
 

 

Exploring spatio-temporal patterns and potential factors of 

traffic congestion: a case study of New York City

ABSTRACT 

Traffic congestion has become a pressing urban issue 

alongside rapid urbanization, impacting various aspects of 

citizens' lives, from daily commutes and mental well-being 

to broader goals of urban sustainability. Understanding the 

underlying mechanisms of traffic congestion can inform 

effective solutions and policies. To reach this goal, a critical 

step is systematically identifying the geospatial factors that 

shape traffic patterns. However, existing studies focus 

primarily on the spatial and temporal characteristic analysis 

of traffic congestion with a lack of exploration of potential 

factors driving these spatio-temporal patterns. This study 

addresses this gap by analyzing a dataset of approximately 

26.07 million average travel speed records for 100,206 road 

segments in New York City over one month. Firstly, based 

on the travel time index (TTI) and hierarchical clustering 

method, typical congestion patterns across city and borough 

levels are identified. Then, least squares regression analysis 

is applied to explore the significant factors related to traffic 

congestion. Finally, five non-linear function models are used 

to better characterize relationships between TTI and each 

significant factor, with Pearson correlation applied to 

address multicollinearity. The findings show four temporal 

and two spatial congestion patterns in New York City , with 

12 out of 20 selected factors—categorized as Diversity, 

Density, Design, and Distance to transit—emerging as key 

determinants of congestion patterns. Building on these, the 

study proposes strategies to alleviate traffic congestion, 

providing actionable insights for optimizing traffic 

management and establishing a foundation for congestion 

prediction. 
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• Information systems → Geographic information systems; 

• Data mining → Clustering. 
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1 Introduction 

The rapid urbanization has boosted socio-economic 

development but also resulting in various urban challenges. 

Among them, traffic congestion stands out as a critical issue, 

affecting citizens’ daily activities and mental health [1] [2]. 

To understand its underlying mechanism, it is key to explore 

spatio-temporal variations of traffic congestion and 

investigate the relationship between traffic congestion 

patterns and the associated potential factors. While previous 

studies have addressed such topic, they either mainly focus 

on city level with a lack of borough level analysis or conduct 

a study without a comprehensive analysis on what and how 

geospatial factors potentially shape traffic congestion.  

To fill the gap, this study systematically explores spatio-

temporal patterns of traffic congestion and the associated 

factors from the lens of transport geography. Taking New 

York City as a case study, an hourly average speed data set 

from Dec 1, 2018 to Dec 31, 2018 is analyzed for uncovering 

spatio-temporal characteristics, and an associated social 

sensing dataset is studied for factors exploration.  

This study resulted in the following three contributions: 

⚫ Four temporal patterns and two spatial patterns at city 

and borough levels are uncovered by employing a 

hierarchical clustering method 

⚫ A multiple linear model based on least square method 

is established, linking the traffic congestion index with 

16 significant influencing factors 

⚫ Non-linear fitting combined with Pearson correlation 

analysis is employed to elucidate the true relationships 

between congestion and these factors, providing a 

deeper insight into the key determinants of traffic 

congestion 

The paper is structured as follows: Section 2 describes the 

study area and dataset utilized in this study. Section 3 

outlines the methodology. Section 4 presents the clustering 

results and identifies potential factors related to traffic 

congestion patterns. Section 5 discusses the findings and 

concludes the study.  



 

 

 

2 Materials 

2.1 Study area 

The New York City (NYC) is selected as the case study 

owing to its intricate and diverse road network, coupled with 

extensive access to traffic data, enabling a detailed analysis 

of congestion patterns. The city exhibits multicentricity 

characteristics, including five boroughs: Manhattan, Bronx, 

Brooklyn, Queens, and Staten Island (Fig.1a). A total of 

110,704 road segments are selected and the road network 

system is comprised of expressways, primary roads, 

secondary roads, tertiary roads and branches (residential 

roads, service roads, living streets, tracks, etc.) (Fig.1b). 

  

(a) Boroughs of NYC (b) Road Network (2018) 

Figure 1: Study area 

2.2 Dataset 

2.2.1 Average travel speed data. In this study, 25,068,883 

records of average travel speed data were obtained from the 

Uber Movement plaform covering 100,206 road segments in 

the period from Dec 1, 2018 to Dec 31, 2018 with an one-

hour temporal resolution. Each record of the travel speed 

data contains three fields: recording time, road segment ID 

and average speed. Finally, a total of 2,221,916 records of 

Mondays are extracted, 9,680,290 records of the other four 

weekdays are extracted, 5,396,114 records of weekends are 

extracted and 7,770,563 of holidays are extracted. 

2.2.2 Social sensing data. The five Ds (density, diversity, 

design, destination accessibility, and distance to the transit) 

are considered to shape urban forms and influence human 

behaviors [5]. Traffic congestion, in turn, can be regarded as 

a consequence of human travel patterns heavily reliant on 

automobiles, alongside complex urban structures [4]. In this 

study, we categorize 20 factors that may influence traffic 

congestion into four classes based on the Ds model, 

excluding destination accessibility due to data limitations. 

These four categories of factors are then used as explanatory 

variables to examine the relationship between urban form 

factors and traffic congestion. (Table 1).  

Table 1: Four “Ds” built-environment variables 

Four Ds Independ variables Symbol 

Diversity 

Number of social service facilities 𝑋1 

Number of commercial facilities 𝑋2 

Number of residential facilities 𝑋3 

Number of recreational facilities 𝑋4 

Number of transportation facilities 𝑋5 

Number of educational facilities 𝑋6 

Number of cultural facilities 𝑋7 

Number of healthcare facilities 𝑋8 

Number of bus stops 𝑋9 

Density 

Population density 𝑋10 

Building height 𝑋11 

Area of parking lots 𝑋12 

Design 

Road length 𝑋13 

Road width 𝑋14 

Number of street lights 𝑋15 

Distance to the nearest bridge 𝑋16 

Length of bike routes 𝑋17 

Distance 

to transit 

Distance to the nearest bus stop 𝑋18 

Distance to the nearest subway entrance 𝑋19 

Distance to the nearest domestic airport 𝑋20 

3 Method 

3.1 TTI-based hierarchical clustering  

To systematically understand the spatio-temporal patterns in 

the NYC, hierarchical clustering was performed on city and 

borough levels by using the constructed average hourly TTI 

matrix. The selection of features is a crucial step of 

clustering, as it is vital for measuring traffic congestion 

performance and identifying clustering patterns. In this 

study, travel time index is adopted to characterize traffic 

congestion, constructing clustering features[6]. The 

calculation formula cam be expressed as formula (1):  

𝑇𝑇𝐼 =
𝑇̅

𝑇𝑓𝑟𝑒𝑒

=

𝐿
𝑉̅
𝐿

𝑉𝑓𝑟𝑒𝑒

=
𝑉𝑓𝑟𝑒𝑒

𝑉̅
 (1). 

𝑇̅ indicates the average travel time.  𝑇𝑓𝑟𝑒𝑒  indicates the free-

flow travel time.  L indicates the length of road segment. 𝑉̅ 

indicates the average travel speed.  𝑉𝑓𝑟𝑒𝑒  indicates the free 

speed. Traffic congestion performance can be divided into 

five levels according to the official classification of TTI in 

AutoNavi map[3], as shown in Table 1 in Appendix.  

Assuming that there are N road segments in the road network, 

the TTI vector of road segment 𝑛  on one day can be 

expressed as  𝑇𝑇𝐼𝑛 = [𝑡𝑡𝑖𝑛,1, 𝑡𝑡𝑖𝑛,2, … , 𝑡𝑡𝑖𝑛,𝑇] ∈ 𝑅𝑇 , where 

𝑡𝑡𝑖𝑛,𝑡 denotes the average TTI value of a single day at the 𝑡𝑡ℎ 

hour. In this study, T is set to 24 as the time interval is 1 hour. 



 

 

Therefore, the TTI matrix for N road segments on one day 

can be acquired as 𝑇𝑇𝐼 = [𝑇𝑇𝐼1, 𝑇𝑇𝐼2, … , 𝑇𝑇𝐼𝑁] ∈ 𝑅𝑁×𝑇 . 

Through a visualization for the TTI of every day, one can 

find that there is significant difference among Mondays, the 

other four normal weekdays, weekends and holidays. 

Therefore, four matrices are calculated respectively. 

(𝑇𝑇𝐼𝑀𝑜𝑛𝑑𝑎𝑦𝑠, 𝑇𝑇𝐼𝑁𝑜𝑟𝑚𝑎𝑙 𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑠 , 𝑇𝑇𝐼𝑊𝑒𝑒𝑘𝑒𝑛𝑑𝑠, 𝑇𝑇𝐼𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑠) 

Due to the effectiveness in terms of clustering and the ease 

of results visualization, There are two main approaches of 

hierarchical clustering[7]: agglomerative clustering and 

divisive clustering, depending on whether the dendrogram 

formation using a “bottom-up” agglomerative strategy or a 

“top-down” divisive strategy.The agglomerative approach[8] 

is applied to the TTI matrix to obtain clusters.   

3.2  Exploration of potential factors 

A regression model based on least squares regression [9] is 

initially applied to fit the relationship between TTI and the 

explanatory variables. In the regression analysis, the TTI is 

the average value of each road segment over the study period, 

representing the typical congestion level. Similarly, the 

potential factors are road segment-level attributes capturing 

various spatial and built-environment variables around each 

road. While the regression model can reflect the relationship 

between TTI and multiple factors, multicollinearity may 

exist among the explanatory variables. Hence, the Pearson 

correlation coefficient [10] is employed to a better discovery 

for the relationship between TTI and explanatory variables.  

4 Results 

4.1 Spatio-temporal patterns 

The clustering dendrograms are shown in Fig.2-Fig.6 in 

Appendix. The variation curve of the travel time index with 

time was shown in Fig.2-Fig.7. The horizontal axis presents 

the hours of a day, while the vertical axis presents the 

average value of TTI. It can be found that the spatio-

temporal patterns of the five boroughs are consistent with 

that of the city, with four temporal patterns (i.e., Mondays 

pattern, normal weekdays pattern, weekends pattern and 

holidays pattern) and two spatial patterns. According to the 

classification of the TTI, the spatial pattern of cluster 1 can 

be defined as smooth with mild congestion at peak hours, 

while the spatial pattern of cluster 2 can be defined as 

congestion pattern.  

The clustering results show that there are two evident peaks 

in the morning and evening on weekdays, while only 

evening peak exists on weekends and holidays. From the TTI 

value, we can also find that the traffic pressure on weekdays 

is stronger than that of non-weekdays. Although Mondays 

and normal weekdays exhibit morning and evening peak 

characteristics at the same time, there is a difference in the 

traffic congestion intensity, that is, the morning peak on 

Mondays is usually more congested than that of normal 

weekdays, while the evening peak is the opposite. This 

phenomenon indicates that commuting is indeed a main 

causation for traffic congestion in the NYC on weekdays. 

Similarly, there is also difference in congestion intensity 

between weekends and holidays. An interesting 

phenomenon is that the congestion intensity on weekends is 

usually weaker than that of holidays except for Manhattan. 

Possible reasons for this may include the decrease in 

commuting, tourism, local residents’ activities and 

commercial activities on weekends. 

To further gain insight into the traffic congestion 

performance of the five boroughs, the proportion of the TTI 

at different levels are summarized as shown in Fig.8. It can 

be seen that Manhattan and Brooklyn have the highest traffic 

pressure, with congestion state accounting for more than 50% 

of the total time. Especially, the congestion period of 

Manhattan on weekdays even reaches to 70%. Queens and 

Staten Island are in a state of free, smooth, and mild 

congestion for more than 70% and 80% of the time, 

respectively. These two boroughs have the lowest traffic 

pressure compared to the other three ones. Besides, the 

heavy congestion state on weekdays is about 1-2% higher 

than on non-weekdays, implying that the traffic pressure on 

weekdays is stronger than non-weekdays. 

  

(a) (b) 

  

(c) (d) 

Figure 2: Spatio-temporal patterns of roads in NYC 
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(c) (d) 

Figure 3: Spatio-temporal patterns of roads in Manhattan 
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(c) (d) 

Figure 4: Spatio-temporal patterns of roads in Brooklyn 

  

(a) (b) 

  

(c) (d) 

Figure 5: Spatio-temporal patterns of roads in Queens 
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(c) (d) 

Figure 6: Spatio-temporal patterns of roads in Bronx 

  

(a) (b) 

  

(c) (d) 

Figure 7: Spatio-temporal patterns in Staten_Island 

 



 

 

  

(a) Monday (b) Normal weekdays 

  

(c) Weekend (d) Holiday 

 

Figure 8: Proportion of TTI for the five boroughs 

4.2 Exploration of potential factors 

T-test and p-value are utilized to test the significance of 

regression coefficients. If the p-value is less than 0.05, it 

indicates that the corresponding regression coefficient is 

significant. The univariate linear regression is firstly 

performed between TTI and each factor, and the results 

(Table 2 in Appendix) indicate that all 20 factors are highly 

significant with TTI. Then multiple linear regression based 

on least square method is used to explore the combined 

effects of multiple factors (Table 3 in the Appendix), while 

the p-values for the four factors (i.e., number of residential 

facilities, transportation facilities and bus stops, area of 

parking lots) are bigger than 0.05. Therefore, the four 

insignificant factors are deleted and only the 16 significant 

factors are reserved in the final multiple linear regression 

model (Table 2). It can be found that all variables related to 

distance to transit show significant negative correlation with 

the TTI, which is consistent with empirical conclusions. And 

the final regression model can be expressed as 

TTI = 0.91 + 0.35𝑋1 + 1.19𝑋2 + 0.19𝑋4 − 0.11𝑋6 − 0.26𝑋7

+ 0.19𝑋8 + 0.20𝑋10 + 0.61𝑋11 + 0.49𝑋13

− 0.16𝑋14 + 0.63𝑋15 − 0.34𝑋16 − 0.37𝑋17

− 0.62𝑋18 − 0.30𝑋19 − 0.25𝑋20.                 (2) 

 

Table 2: Results of multiple regression model (OSL) 

Ds variable coefficient t-value p-value 

 Constant 0.914 39.116 *** 

Diversity 
𝑋1 0.348 4.764 *** 

𝑋2 1.194 15.282 *** 

𝑋4 0.189 4.507 *** 

𝑋6 -0.108 -2.186 *** 

𝑋7 -0.258 -3.067 *** 

𝑋8 0.190 4.582 *** 

Density 
𝑋10 0.198 3.236 *(0.032) 

𝑋11 0.611 9.445 *** 

Design 

𝑋13 0.490 1.035 **(0.003) 

𝑋14 0.163 -3.394 *** 

𝑋15 0.627 15.115 *** 

𝑋16 -0.335 -8.573 *** 

𝑋17 -0.356 -2.433 *** 

Distance 

to transit 

𝑋18 -0.617 -9.128 *** 

𝑋19 -0.259 -7.187 *** 

𝑋20 -0.251 -7.846 *** 

𝑅𝑎𝑑𝑗
2 =0.188 

 

Note:  

***means that p-value is less than 0.001 (extremely significant). 

**means that p-value is less than 0.05 (highly significant). 

* means that p-value is less than 0.01 (significant). 

 

Although formula (2) established a linear relationship 

between TTI and 16 significant factors, and the model 

passed the significance test, the R squared was very low with 

only 0.188. We consider it may be because linear models are 

not suitable for describing the potential relationship between 

TTI and variables. Besides, a noteworthy result is that some 

factors positively correlated with TTI in the univariate 

regression model, but show negative correlation in the 

multiple regression model, such as the number of 

educational and cultural facilities. This may be due to the 

multicollinearity between variables. To verify our 

hypothesis, we firstly resampled the data points according to 

an appropriate step size, replacing TTI within a step range 

with its mean. Then five non-linear function models (i.e., 𝑦 =

log𝑎 𝑥 ;  𝑦 = 𝑎 ln 𝑥 + 𝑏;  𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐;  𝑦 = 𝑎𝑒𝑥;  𝑦 = 𝑎𝑥𝑏 ) 

were adopted to fit the underlying relationship, and the 

optimal model with the highest R squared was selected. Here 

we show several examples in Fig. 9. It can be found that the 

curves in Fig.9(a)-(c) are very similar, and the same as 

Fig.9(d)-(f), implying that one factor may replace the other 

two. In other words, there may be multicollinearity between 

the factors with the same optimal model. To further prove 

our hypothesis, we perform linear regression on these factors, 

and the results were shown in Table3. The p-values are 

smaller than 0.001, and the R squared is relatively high. Thus, 

we can draw a conclusion that there was indeed 

multicollinearity between the factors with similar fitting 

model, although TTI and each factor display non-linear 

relationship. 



 

 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 9: Illustration of the optimal non-linear model 

 

Table 3: Results of multiple regression model (OS) 

Dependent 

variable 

Independent 

variable 

coefficient R 

squared 

p-value 

𝑋2 
𝑋1 0.884 0.816 *** 

𝑋7 0.849 0.865 *** 

𝑋4 
𝑋6 0.629 0.648 *** 

𝑋8 0.810 0.512 *** 

 

To further explore the potential factors of traffic congestion, 

we have to overcome the multicollinearity among the 16 

significant factors. The Pearson correlation coefficients 

including significant test results are calculated between the 

16 factors, as shown in Fig.10. The results are consistent 

with that in Table 3. Therefore, we replace 𝑋1 and  𝑋7 by 𝑋2, 

and replace 𝑋6 and  𝑋8 by 𝑋4. Finally, only 12 factors are 

reserved, and the Pearson correlation of them is shown in 

Fig.11. The reserved 12 factors pass the significant test of 

multiple linear regression model, and overcome the 

multicollinearity between variables. We regard the reserved 

12 factors as the potential factors of traffic congestion, which 

may characterize the underlying mechanism of the spatio-

temporal congestion patterns in NYC. 

 

Figure10: Pearson correlation analysis on 16 significant 

factors (X1: the number of social service facilities; X2: 

commercial facilities; X4: recreational facilities; X6: 

educational facilities; X7: cultural facilities; X8: healthcare 

facilities; X10: population density; X11:building height; 

X13: road length; X14: road width; X15: number of street 

lights;X16: distance to the nearest bridge;X17: length of bike 

routes; X18: distance to the nearest bus stop; X19: distance 

to the nearest subway entrance; X20: distance to the nearest 

domestic airport.) 

 

Figure 11: Pearson correlation analysis on 12 significant 

factors 

5 Discussion and conclusions 

Traffic congestion poses a significant challenge to urban 

sustainability, affecting travel efficiency, economic 

development, the environment, and residents' quality of life. 

Understanding its spatio-temporal patterns and influential 

factors is essential for effective traffic management policies 

and sustainable transportation. Existing work lack a 

systematic investigation for this issue. This study contributes 

to the literature by analyzing a total of 2,221,916 average 



 

 

travel speed records in the NYC from Dec1, 2018 to Dec 31, 

2018. The empirical findings yield three main conclusions:  

i. Urban traffic congestion performance varies with 

different types of days (i.e., Mondays, normal 

weekdays, weekends and holidays) and different 

boroughs in the NYC, but the spatio-temporal patterns 

at borough level are consistent with that of city level. 

The morning rush hours on Mondays are more 

congested than other working days, while the evening 

rush hours display an opposite trend. Holidays are 

usually more congested than weekends, with the 

exception of Manhattan, while Manhattan presents the 

strongest traffic pressure among the five boroughs. It 

can be due to that Manhattan is the commercial center 

of NYC but limited by the old road network.  

ii. The 20 factors selected in the experiment are found to 

be significantly correlated with traffic congestion, but 

only 16 factors are included in the multiple regression 

model. The model indicates that commercial facility, 

building height and street lights are relatively more 

notable than the other factors, which may provide 

inspiration for policy formulation to alleviate traffic 

congestion.  

iii. Non-linear models and Pearson correlation analysis are 

utilized to explore the factors potentially shaping traffic 

congestion , addressing multicollinearity that suggests 

overlapping information among variables. As a result, 

only 12 key factors are retained. 

The proposed framework for exploring the spatio-temporal 

patterns and the potential factors of traffic congestion can 

also provide a reference for other cities to understand the 

underlying mechanism of traffic congestion and formulate 

effective policies. Based on this study’s empirical findings, 

NYC residents may avoid peak congestion by choosing 

optimal commuting times, while policymakers can 

implement targeted measures to alleviate congestion. The 

policy measures derived from the analysis results can be 

suggested as follows:  

1) To address the issue of “Monday morning rush hour 

congestion”, targeted policies could restrict private 

vehicle passage during specific periods or in certain 

areas, promote public transportation, and reduce the 

number of vehicles on the road. Employers could 

encourage flexible work hours, allowing employees to 

commute outside peak times, thereby dispersing traffic 

flow. Elderly residents might also consider staggered 

travel to avoid peak hours[11]. 

2) Given the high traffic pressure in Manhattan on 

weekends, public transportation could be optimized by 

increasing the efficiency, capacity, and frequency of 

buses, subways, or light rail services. On the other hand, 

urban land use and planning should be considered with 

traffic congestion issues. Taking into account the 

transportation and compactness of land use patterns, 

traffic congestion can be alleviated by rational 

diversion [12].  

3) Targeting the explored potential factors of traffic 

congestions, it reminds traffic management department 

to pay more attention to commercial areas and building 

height. In some specific areas with severe congestion, 

it is possible to consider limiting the height of buildings. 

Lower building heights can reduce the likelihood of 

obstructing traffic views and causing shadow effects, 

improving the visibility and safety of road traffic[13]. 

This study also highlights areas for further research. Future 

work should explore extended temporal patterns of traffic 

congestion, assessing seasonal and periodic variations. 

Additionally, given the multifaceted nature of congestion, 

incorporating factors such as weather conditions, precise 

road structures, and remote sensing data would enhance 

understanding and provide a more comprehensive view of 

urban traffic dynamics. 
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Appendix 

Table 1: TTI level and its meaning 

TTI Traffic congestion performance 

[0, 1.0) Free flow 

[1.0, 1.5) Smooth 

[1.5, 2.0) Mild congestion 

[2.0, 4.0) Congestion 

[4.0, +∞) Heavy congestion 

 

  
(a) Monday (b) Normal weekdays 

  
(c) Weekend (d) Holiday 

Figure 1: Dendrograms (NYC). 
 

  
(a) Monday (b) Normal weekdays 

  
(a) Weekend (d) Holiday 

Figure 2: Dendrograms (Manhattan). 

  
(a) Monday (b) Normal weekdays 

  
(c) Weekend (d) Holiday 

Figure 3: Dendrograms (Brooklyn). 

 

  
(a) Monday (b) Normal weekdays 



 

 

  
(c) Weekend (d) Holiday 

Figure 4: Dendrograms (Queens). 

 

  

(a) Monday (b) Normal weekdays 
 

 

  
(c) Weekend (d) Holiday 

Figure 5: Dendrograms (Bronx). 

 

  
(a) Monday (b) Normal weekdays 

  
(c) Weekend (d) Holiday 

Figure 6: Dendrograms (Staten_Island). 

Table 2: Results of univariate regression model (20 factors) 

variable coefficient R-squared t-value p-value 

𝑋1 0.135 0.123 109.683 *** 

𝑋2 0.142 0.121 112.991 *** 

𝑋3 0.126 0.116 111.146 *** 

𝑋4 0.045 0.031 50.704 *** 

𝑋5 0.094 0.078 89.229 *** 

𝑋6 0.089 0.084 95.984 *** 

𝑋7 0.126 0.116 111.146 *** 

𝑋8 0.127 0.110 107.845 *** 

𝑋9 0.098 0.115 110.905 *** 

𝑋10 0.127 0.148 1128.418 *** 

𝑋11 0.210 0.109 107.531 *** 

𝑋12 -0.119 0.008 -27.998 *** 

𝑋13 -0.067 0.002 -9.847 *** 

𝑋14 0.043 0.004 14.246 *** 

𝑋15 0.112 0.112 109.036 *** 

𝑋16 -0.057 0.013 -34.641 *** 

𝑋17 -0.126 0.007 -21.977 *** 

𝑋18 -0.117 0.026 -50.528 *** 

𝑋19 -1.240 0.057 -75.967 *** 

𝑋20 -0.160 0.116 -40.601 *** 

 

Table 3: Results of multiple regression model (20 factors) 

Ds variable coefficient t-value p-value 

 Constant 0.979 31.918 *** 

Diversity 

𝑋1 0.332 4.292 *** 

𝑋2 1.214 14.261 *** 

𝑋3 0.039 1.444 0.149 

𝑋4 0.218 4.590 *** 

𝑋5 0.004 0.100 0.921 

𝑋6 -0.208 -4.588 *** 

𝑋7 -0.217 -2.421 * 

𝑋8 0.169 3.504 *** 

𝑋9 -0.031 0.641 0.522 

Density 

𝑋10 0.202 3.210 ** 

𝑋11 0.565 8.570 *** 

𝑋12 -0.154 -0.789 0.430 

Design 

𝑋13 0.425 3.322 ** 

𝑋14 -0.170 -3.398 ** 

𝑋15 0.699 14.836 *** 

𝑋16 -0.300 -7.098 *** 

𝑋17 -0.796 -4.665 *** 

Distance 

to transit 

𝑋28 -0.726 -9.367 *** 

𝑋19 -0.277 -5.782 *** 

𝑋20 -0.297 -7.350 *** 

𝑅𝑎𝑑𝑗
2 =0.188 

 


